Non-Hermitian Quantum Mechanics of Non-diagonalizable Hamiltonians: puzzles with self-orthogonal states

نویسندگان

  • A V Sokolov
  • A A Andrianov
  • F Cannata
چکیده

We consider QM with non-Hermitian quasi-diagonalizable Hamiltonians, i.e. the Hamiltonians having a number of Jordan cells in particular biorthogonal bases. The ”self-orthogonality” phenomenon is clarified in terms of a correct spectral decomposition and it is shown that ”self-orthogonal” states never jeopardize resolution of identity and thereby quantum averages of observables. The example of a complex potential leading to one Jordan cell in the Hamiltonian is constructed and its origin from level coalescence is elucidated. Some puzzles with zero-binorm bound states in continuous spectrum are unraveled with the help of a correct resolution of identity. Submitted to: Journal of Physics A: Math. Gen. PACS numbers: 03.65.-w,03.65.Ca,03.65.Ge Non-Hermitian Quantum Mechanics 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-Supersymmetric Quantum Mechanics and Isospectral Pseudo-Hermitian Hamiltonians

We examine the properties and consequences of pseudo-supersymmetry for quantum systems admitting a pseudo-Hermitian Hamiltonian. We explore the Witten index of pseudo-supersymmetry and show that every pair of diagonalizable (not necessarily Hermitian) Hamiltonians with discrete spectra and real or complex-conjugate pairs of eigenvalues are isospectral and have identical degeneracy structure exc...

متن کامل

Non-linear Supersymmetry for non-Hermitian, non-diagonalizable Hamiltonians: I. General properties

We study complex potentials and related non-diagonalizable Hamiltonians with special emphasis on formal definitions of associated functions and Jordan cells. The non-linear SUSY for complex potentials is considered and the theorems characterizing its structure are presented. We define the class of complex potentials invariant under SUSY transformations for (non-)diagonalizable Hamiltonians and ...

متن کامل

Non-linear Supersymmetry for non-Hermitian, non-diagonalizable Hamiltonians: II. Rigorous results

We continue our investigation of the nonlinear SUSY for complex potentials started in the Part I [7] and prove the theorems characterizing its structure in the case of nondiagonalizable Hamiltonians. This part provides the mathematical basis of previous studies. The classes of potentials invariant under SUSY transformations for non-diagonalizable Hamiltonians are specified and the asymptotics o...

متن کامل

Exact propagators for complex SUSY partners of real potentials

A method for calculating exact propagators for those complex potentials with a real spectrum which are SUSY partners of real potentials is presented. It is illustrated by examples of propagators for some complex SUSY partners of the harmonic oscillator and zero potentials. Recently a considerable attention has been paid to investigating different properties of non-Hermitian Hamiltonians (see e....

متن کامل

Pseudo-Hermiticity for a Class of Nondiagonalizable Hamiltonians

We give two characterization theorems for pseudo-Hermitian (possibly nondiagonalizable) Hamiltonians with a discrete spectrum that admit a block-diagonalization with finite-dimensional diagonal blocks. In particular, we prove that for such an operator H the following statements are equivalent. 1. H is pseudo-Hermitian; 2. The spectrum of H consists of real and/or complex-conjugate pairs of eige...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008